
AD-fl157 363 THE ORIENTATION DISTRIBUTION OF NONSPIIERICAL AEROSOL /
PARTICLES WITHIN A CLOUD(U) HEBREW UNIV JERUSALEM
(ISRAEL) DEPT OF ATMOSPHERIC SCIENCES I GALLILY DEC 84

UNLSIID DJ4-3C00 / 04 N



11111-1.5
L32

III W'- lB=

MICRCOP REOUINTS HRNATINAL UREA OF TANDRDS-963-

~. huh ~ um%%



I.'/33 - 4

(v} ..(0)

The Orientation Distribution of Nonspherical

Aerosol Particles within a Cloud *-

*t b'q

Second Technical Interim Report

by

isaiah Gallily, Chief Investigator,

Department of Atmospheric Sciences,

The Hebrevw University of Jerusalem,
Jerusalem, Israel

December, 1984 4.

Contract DAJA 45-83-C-0004

United States Army Research, Development

and Standarization Group - UK,

London NW1, England

DTIC
IS'EL.CTE

JUL 1 9"

.- '.

Apt lobtiO public tede0"
Distibution Unlimited



Previous Publications: Krushkal, E.M. and Gallily, I., "On the *

Orientation Distribution Function of Nonspherical Aerosol

Particles in a General Shear Flow. I. The Laminar Case", L7eSBI.?1 T

J. Colloid Interface Sci. 99, 141 (1984), and in the p T"c R

Proceedings of the 1983 CSL Conference on Obscuration and I I,3o-n.'
Aerosol Research, p. 19-58 (1984).

"The Orientation Distribution of Nonspherical Aerosol

Particles in the Atmosphere; New Developments", in the

Proceedings of the 1984 CRDC Conference on Obscuration .

and Aerosol Research (Draft for Presenters and CRDC Use), Dist

p. 57-68 (1984)

\The models

Having performed a study on the orientation density function (o.d.f.) of small

spheroidal aerosol particles in a general field of an arbitrary strength, (1,2) it

became possible to treat the orientation problem in a turbulent medium. To this end,

two interconnected physical models were applied. In the fiRst, hhe Realizations

Model,"it was assumed that the turbulent particle field constituted an ensemble of

an infinite number of realizations, j, each one of which is char, terized by one set

of the o.d.f., F(i) (x,t), values. The latter was taken in that model to essentially

coincide with the previously found solution of the Fokker-Planck equation (-1-in the

field of the realization. - , ,

3 F 7 - - 0 (1)

Cj . - ! '

where W is the rotational velocity of the particles and 0e is their rotational

Peclet number defined by Wo/'De , being a typical component of the (fluid)

gradient tensor, De an effective rotational diffusion coefficient and R the

particle aspect ratio; Wik is a gradient component 2 U x ( 1 / ax.

a component of the fluid velocity). The use of the solution is based on the estimate

that, even for the highest (Kolmogoroff) frequency component of iA1 , the rotational

Reynolds number for the studied particles is smi.all enough to render their motion
(quasi) stationary.
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In the secnd, O he Micro-turbulence Model, a relation between the so-called

turbulent rotational diffusion coefficient 4 Z. of the particles and the physical
characteristics of the fluid field was supplied. This coefficient and the Brownian
rotational diffusion one, , compose the effective diffusion coefficient

Ee= D+ fa(2)

Expressing the stochastic quantities of the system as F = F+ F', cOL= C3 L C4 ,
W, 'UrW and 's-- u , it could be shown that the realizations average
of F, ( r(CJ) ,~ ,It ),for a space-time point is actually F (wx ,)

for that point and that

t' ' - D F V (3)

The particles considered were taken to be much smaller than the Kolmogoroff scale;

so, the turbulent rotational diffusion coefficient itself, r was assumed

in the second model to depend on the randomizing action of the turbulent pressure

fluctuations at the particles' surface which arise from the (Kolmogoroff) micro-

turbulence.

From dimensional analysis it was obtained that

= ' (4)

where e , the turbulent dissipation energy, is given for an homogeneous steady field

by (3)

,.".

6 = (5 ),A' (s)
i, k b
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Applications

As the turbulent gradient tensor W'L* is not completely known in many fluid systems,

it was necessary in the present study either to supplement the missing data by the

results of numerical simulations or (reasonable) guesses or both. In cases of interest,

there was conducted a parametric investigation in which the effect of structure changes

in the gradient tensor on the o.d.f. was tested.

The numerical simulations of the turbulent field were carried out according to the

method of Wang and Frost (4) where u(. = 14 Ct) is found. In this method, however,

only the three components W'i± (i = 1,2,3) could be acquired due to the applicability

of the relationship known as the Taylor hypothesis, viz.

UL -a t - LAL & (6)

to those components alone

The rest of the gradient components were extracted either from the eyperimental findings r'.

of Klebanoff (5) for the studied situations of a turbulent flow over a flat surface as

in the atmospheric boundary layer or from those of Wignansky and Fiedler (6) for the

studied situation of a free round turbulent jet, or from parametric checks as mentioned

above. The experimentally acquired gradient components are given in the form of

Sw'i, = ' t ) '/2 and so were taken the rest of the components. The

(turbulent) fluid was assumed to be incompressible, viz. ! L, 0, and it was set

that

AW' = a - A ' (7)

or with reversed signs.

Obviously, since in addition to the average value off ,F, or its maximal value F.,

some measure of the spread of the o.d.f. values is desired, a procedure was adopted in Z
which this (F) function was calculated for the following three realization fields:

(1) w(a
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(2) .(8b)

and

.(3) W A W (8c)

Finally, to account for any uncertainties in the turbulent field data, the

(determining) effective Peclet number was parameterized by a numerical factor

to be

CO.o Wo / D, (9)

where Wo W. W" Wo' E (A W',,)o] being a typical turbulent component.

Results

Two physical situations were studied:

1. The near-ground atmospheric boundary layer, in which only

= /
U. (tA ( / k.) +. 7. / Z. )(10)

and

- ..
, 13 £ U / Z,

essentially exist, z being the elevation above ground, u, the mean horizontal

velocity, u* the friction velocity, k. von Karman Constant and z the roughness
height. L

Si.



-5-

2. The turbulent round free jet, for which the Schlichting's solution for the

average velocity components (7) was used. In this solution, the (molecular)

kinematic viscosity - is replaced by a virtual (turbulent) kinematic viscosity c,

given in the equation

6 0. 1z (12)

where ' (=J/g) = 1.59 b./2 Uo , ' is the kinematic momentum of the

jet,b is its half-width and uo  is the average fluid velocity along its axis

i(b = cx 1 in which c is 0.63 to 0.79, as experimentally found).

In the boundary layer situation, both the case of a "weak turbulence", where

JW O , and a "strong tubulence", where Wo >> o ,were
•investi gated.

For the first case, numerical simulations were employed while for the second one

Klebanoff's experimental data (5) supplemented by simulations was applied. Also, in

the latter case, the version

12 2  W 2  3 (13a)

or

2 2
2.3 ,, (13b)

was taken. The calculations in both cases were carried out with-)=0.15 cm2/sec.,
A (thickness of the atmospheric boundary layer) = 103m, zo = .i, ko = 0.4, rDB =

1 sec -1, and e deduced from Eq. (5). The calculation time for F was greater than

the relaxation time of the particles, and AO - If = Tr ,2 or I / 2 A

In the turbulent jet situation, the ratio between the various values of

was obtained (6) through



-6

W. = .,3 (14)

where c2= 1 + exp (-200r 2), r being the radial distance within the jet.

For both situations, the absolute values of 4W' were deduced by

normalization according to Eq. (5). Values of F, and Fm, together with the

deviations of F for fields (2) & (3) (above), were calculated as a function of height

above ground (and hence C ) in the boundary layer situation, the aspect ratio of the

particles, R (R > 1 for fibers and R< 1 for platelets), and the parameterization

factor d . However, only the following typical figures are presented here:

0.12 '

ojo -

40.041

VA 1'1 7r/2 3"7r/4 7r

Figure 1. The average o-d.f. , F vs. 0 for the atmospheric boundary layer,

"weak turbulence", with :

z = 2.5 to 20m (1) 2.5m, (2) 5m, (3) 10m, (4) 20m%

R - 10, Tr, = /2,
Q e = 1I FI -W according to Eq. (11),WN,, = '13

Solid lines are simulation results (254 realizations, usually); points are values

calculated from the 'Td- f ield.
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Figure 2. The maximal o.d.f., Fm, vs. height for the atmospheric boundary layer,

"strong turbulence". R = 50; E decreases with height according to Ball (8).
( ) (3)

,(2) W, , (3) lWi ; dashed lines are cases where terms of Eq. (7)

are taken with opposite signs; points relate to combination of Eq. (13b).

(Line 1 essentially coincides with the random distribution one )

i.

- ,'
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22

104 icr 10-2 R 102 10 0

Figure 3. The maximal o.d.f., Fm vs. particle aspect ratio R for the atmospheric

boundary layer, "strong turbulence".

z5m, c = 20 2/sec-3

(1) V-)(2) W2,(3) W3
ik' ik' ik

(Line 1 essentially coincides with the random distribution one)j
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Figure 4. The maximal o.d.f. Fm vs. the parameter 'c, for the atmospheric

boundary layer; "strong turbulence".

R = 50 , R = -.02 ..... ; z 2.5m; E 5 cm2/sec 3 .

() W (2) (3) W(3 )

ik
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.Figure 5. The maximal o.d.f., Fm, vs. particle aspect ratio R for a free turbulent jet.

Location: xl= 2, x2= x3= 0.05 (see ref. 1),

= Sec' e.2 3
2' 5 sec - ,  =250 cm2/sec

(1),(1'):-W(1);(2),(2') "W( 2 ) ; (3),(3) :W( 3 ) for ' (2' (3' tems of Eq. (7)
i' "ikf

are taken with opposite signs.

(Line 1 essentially coincides with the random distribution one )
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Figure 6. The maximal o.d.f., Fm vs. the parameter o~for a free turbulent jet.

W, 5 sect x1=2, x2= x3~ 0.05 (see ref. 1)

= 25an/sec3  R 50 - R 0.02----

. ... ..
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Conclusions
a...

Atmosphere boundary layer (up to 20 m height):
4~f.

1. The average o.d.f. in a weak turbulent field shows structured (preferred)

orientation.

2. The maximal (and average) o.d.f. in a strong, commonly occurring, turbulent

field of the average realization W(1) essentially coincide with the randomik
distribution while the spread of the values of the function between fields

-
2 and W is quite significant. This spread of values may have practicalik ik

connotations.

3. The values of Fm and its deviations increase with the parameter as expected.

Free turbulent jet:

Conclusions 2 and 3 of the former situation apply here too.
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